
Chapter 11: Pointers and
Dynamic Memory

Management

Sections 11.111.2, 11.511.7

1

Textbooks: Y. Daniel Liang, Introduction to Programming with C++, 3rd Edition
© Copyright 2016 by Pearson Education, Inc. All Rights Reserved.

These slides were adapted by Prof. Gheith Abandah from the Computer Engineering Department of the University
of Jordan for the Course: Computer Skills for Engineers (0907101)

Updated by Dr. Ashraf Suyyagh (Spring 2021)

Outline

• Introduction
• Pointer Basics
• Arrays and Pointers
• Passing Pointer Arguments in a

Function Call
• Returning a Pointer from Functions

2

Introduction

3

• Pointer variables, simply called pointers, are
designed to hold memory addresses as their
values.

• Normally, a variable contains a specific
value, e.g., an integer, a floating-point
value, and a character.

• However, a pointer contains the memory
address of a variable that in turn contains a
specific value.

Outline

• Introduction
• Pointer Basics
• Arrays and Pointers
• Passing Pointer Arguments in a

Function Call
• Returning a Pointer from Functions

4

Pointer Basics

5

Pointer Basics 2

6

Pointer Basics 3

7

Declare a Pointer

8

• Like any other variables, pointers must be declared
before they can be used. To declare a pointer, use
the following syntax:

 dataType* pVarName;

• Each variable being declared as a pointer must be
preceded by an asterisk (*). For example, the
following statement declares a pointer variable
named pCount that can point to an int variable.

 int* pCount;

RunTestPointer

TestPointer.cpp
#include <iostream>
using namespace std;

int main()
{
 int count = 5;
 int* pCount = &count;

 cout << "The value of count is " << count <<
endl;
 cout << "The address of count is " << &count <<
endl;
 cout << "The address of count is " << pCount <<
endl;
 cout << "The value of count is " << *pCount <<
endl;

 return 0;
}

9

The value of count is 5
The address of count is
00AFF980
The address of count is
00AFF980
The value of count is 5

Dereferencing

10

• Referencing a value through a pointer is
called indirection. The syntax for referencing
a value from a pointer is:

 *pointer

• For example, you can increase count using:
 count++; // direct reference
or
 (*pCount)++; // indirect reference

• The asterisk (*) is the indirection operator or
dereference operator.

Pointer and Value
Assignment

11

Pointer and Value
Assignment

12

Pointer and Value
Assignment

13

cout<<*pX<<endl;
cout<<*pY<<endl;
cout<<x<<endl;
cout<<y<<endl;

5
5
9

 5

Pointer and Value
Assignment

14

cout<<*pX<<endl;
cout<<*pY<<endl;
cout<<x<<endl;
cout<<y<<endl;

5
5
5
5

Pointer Type

15

• A pointer variable is declared with a type
such as int, double, etc.

• You have to assign the address of the
variable of the same type.

• It is a syntax error if the type of the variable
does not match the type of the pointer. For
example, the following code is wrong.

 int area = 1;
 double* pArea = &area; // Wrong

Initializing Pointer

16

• Like a local variable, a local pointer is
assigned an arbitrary value if you don’t
initialize it.

• A pointer may be initialized to 0, which is a
special value for a pointer to indicate that
the pointer points to nothing.

• You should always initialize pointers to
prevent errors.

• Dereferencing a pointer that is not
initialized could cause fatal runtime error or
it could accidentally modify important data.

Caution

17

• You can declare two variables on the same
line. For example, the following line declares
two int variables:
int i= 0, j = 1;

• Can you declare two pointer variables on the
same line as follows?
int* pl, pj;

• No, the right way is:
 int *pl, *pj;

Outline

• Introduction
• Pointer Basics
• Arrays and Pointers
• Passing Pointer Arguments in a

Function Call
• Returning a Pointer from Functions

18

Arrays and Pointers

19

• An array variable without a bracket and a subscript
actually represents the starting address of the
array.

• The array variable is essentially a pointer. Suppose
you declare an array of int value as follows:

 int list[6] = { 11, 12, 13, 14, 15, 16 };

Array Pointer
• *(list + 1) is different from *list + 1. The

dereference operator (*) has precedence over +.
• So, *list + 1 adds 1 to the value of the first

element in the array, while *(list + 1)
dereference the element at address (list + 1)
in the array.

20

RunPointerWithIndex

RunArrayPointer

ArrayPointer.cpp
#include <iostream>
using namespace std;

int main()
{
 int list[6] = { 11, 12, 13, 14, 15, 16 };

 for (int i = 0; i < 6; i++)
 cout << "address: " << (list + i) <<
 " value: " << *(list + i) << " " <<
 " value: " << list[i] << endl;

 return 0;
}

21

PointerWithIndex.cpp
#include <iostream>
using namespace std;

int main()
{
 int list[6] = { 11, 12, 13, 14, 15, 16 };
 int* p = list;

 for (int i = 0; i < 6; i++)
 cout << "address: " << (list + i) <<
 " value: " << *(list + i) << " " <<
 " value: " << list[i] << " " <<
 " value: " << *(p + i) << " " <<
 " value: " << p[i] << endl;

 return 0;
}

22

Outline

• Introduction
• Pointer Basics
• Arrays and Pointers
• Passing Pointer Arguments in a

Function Call
• Returning a Pointer from Functions

23

Passing Pointer Arguments
• A pointer argument can be passed by value or by

reference. For example, you can define a function as
follows:

 void f(int* p1, int*& p2);

• which is equivalently to
 typedef int* intPointer;
 void f(intPointer p1, intPointer & p2);

• Here p1 is pass-by-value and p2 is pass-by-
reference.

24

RunTestPointerArgument

Four Versions of the Swap
Function

25

// Swap two variables using
// pass-by-value
void swap1(int n1, int n2)
{
 int temp = n1;
 n1 = n2;
 n2 = temp;
}

// Swap two variables using
// pass-by-reference
void swap2(int& n1, int& n2)
{
 int temp = n1;
 n1 = n2;
 n2 = temp;
}

// Pass two pointers by
value
void swap3(int* p1, int* p2)
{
 int temp = *p1;
 *p1 = *p2;
 *p2 = temp;
}

// Pass two pointers by
// reference
void swap4(int*& p1, int*&
p2)
{
 int* temp = p1;
 p1 = p2;
 p2 = temp;
}

TestPointerArgument.cp
p 1/6

#include <iostream>
using namespace std;

// Function prototypes are here
int main()
{
 // Declare and initialize variables
 int num1 = 1;
 int num2 = 2;

 cout << "Before invoking the swap function, num1 is "
 << num1 << " and num2 is " << num2 << endl;

 // Call one of the first three swap functions here

 cout << "After invoking the swap function, num1 is "
 << num1 << " and num2 is " << num2 << endl;
}

26

TestPointerArgument.cp
p 2/6

27

// Swap two variables using
// pass-by-value
void swap1(int n1, int n2)
{
 int temp = n1;
 n1 = n2;
 n2 = temp;
}

swap1(num1, num2)

TestPointerArgument.cp
p 3/6

28

// Swap two variables using
// pass-by-reference
void swap2(int& n1, int& n2)
{
 int temp = n1;
 n1 = n2;
 n2 = temp;
}

After invoking the swap function, num1 is 2 and num2 is 1

swap2(num1, num2)

TestPointerArgument.cp
p 4/6

29

// Pass two pointers by
value
void swap3(int* p1, int* p2)
{
 int temp = *p1;
 *p1 = *p2;
 *p2 = temp;
}

swap3(&num1,&num2)

After invoking the swap function, num1 is 2 and num2 is 1

TestPointerArgument.cp
p 5/6

#include <iostream>
using namespace std;

void swap4(int*& p1, int*& p2);
int main()
{ // Declare and initialize variables
 int num1 = 1;
 int num2 = 2;
 int* pointer1 = &num1;
 int* pointer2 = &num2;

 cout << "Before invoking the swap function, num1 is "
 << pointer1 << " and num2 is " << pointer2 <<
endl;

 swap4(pointer1, pointer2);

 cout << "After invoking the swap function, num1 is "
 << pointer1 << " and num2 is " << pointer2 <<
endl;
}

30

TestPointerArgument.cp
p 6/6

31

// Pass two pointers by
// reference
void swap4(int*& p1, int*&
p2)
{
 int* temp = p1;
 p1 = p2;
 p2 = temp;
}

After invoking the swap function, pointer1 is 0028FB78 and
pointer2 is 0028FB84

swap4(pointer1,
pointer2)

Before invoking the swap function, pointer1 is 0028FB84 and
pointer2 is 0028FB78

Array Parameter or
Pointer Parameter

32

• An array parameter in a function can
always be replaced using a pointer
parameter.

const Parameter
If an object value does not change, you
should declare it const to prevent it from
being modified accidentally.

33

RunConstParameter

ConstParameter.cpp
#include <iostream>
using namespace std;

void printArray(const int*, const int);

int main()
{
 int list[6] = { 11, 12, 13, 14, 15, 16 };
 printArray(list, 6);

 return 0;
}

void printArray(const int* list, const int size)
{
 for (int i = 0; i < size; i++)
 cout << list[i] << " ";
} 34

11 12 13 14 15 16

Outline

• Introduction
• Pointer Basics
• Arrays and Pointers
• Passing Pointer Arguments in a

Function Call
• Returning a Pointer from Functions

35

Returning a Pointer from
Functions

• You can use pointers as parameters in a
function.

• A C++ function may return a pointer as well.

36

RunReverseArrayUsingPointer

ReverseArrayUsingPoint
er.cpp 1/2

#include <iostream>
using namespace std;

int* reverse(int* list, int size)
{
 for (int i = 0, j = size - 1; i < j; i++, j--)
 {
 // Swap list[i] with list[j]
 int temp = list[j];
 list[j] = list[i];
 list[i] = temp;
 }

 return list;
}

37

ReverseArrayUsingPoint
er.cpp 2/2

void printArray(const int* list, int size)
{
 for (int i = 0; i < size; i++)
 cout << list[i] << " ";
}

int main()
{
 int list[] = { 11, 12, 13, 14, 15, 16 };
 int* p = reverse(list, 6);
 printArray(p, 6);

 return 0;
}

38

16 15 14 13 12 11

Outline

• Introduction
• Pointer Basics
• Arrays and Pointers
• Passing Pointer Arguments in a

Function Call
• Returning a Pointer from Functions

39

	Chapter 11: Pointers and Dynamic Memory Management Sections 11
	Outline
	Introduction
	Outline (2)
	Pointer Basics
	Pointer Basics 2
	Pointer Basics 3
	Declare a Pointer
	TestPointer.cpp
	Dereferencing
	Pointer and Value Assignment
	Pointer and Value Assignment (2)
	Pointer and Value Assignment (3)
	Pointer and Value Assignment (4)
	Pointer Type
	Initializing Pointer
	Caution
	Outline (3)
	Arrays and Pointers
	Array Pointer
	ArrayPointer.cpp
	PointerWithIndex.cpp
	Outline (4)
	Passing Pointer Arguments
	Four Versions of the Swap Function
	TestPointerArgument.cpp 1/6
	TestPointerArgument.cpp 2/6
	TestPointerArgument.cpp 3/6
	TestPointerArgument.cpp 4/6
	TestPointerArgument.cpp 5/6
	TestPointerArgument.cpp 6/6
	Array Parameter or Pointer Parameter
	const Parameter
	ConstParameter.cpp
	Outline (5)
	Returning a Pointer from Functions
	ReverseArrayUsingPointer.cpp 1/2
	ReverseArrayUsingPointer.cpp 2/2
	Outline (6)

