
Chapter 9: Objects and
Classes

Sections 9.19.6, 9.9

1

Textbooks: Y. Daniel Liang, Introduction to Programming with C++, 3rd Edition
© Copyright 2016 by Pearson Education, Inc. All Rights Reserved.

These slides were adapted by Prof. Gheith Abandah from the Computer Engineering Department of the University
of Jordan for the Course: Computer Skills for Engineers (0907101)

Outline
• Introduction
• Defining Classes for Objects
• Example: Defining Classes and Creating

Objects
• Constructors
• Constructing and Using Objects
• Separating Class Definition from

Implementation
• Data Field Encapsulation

2

Introduction

3

• Object-oriented programming (OOP)
involves programming using objects.

• An object represents an entity in the real
world that can be distinctly identified. For
example, a student, a desk, a circle, a
button, and even a loan can all be viewed
as objects.

• An object has a unique identity, state, and
behaviors.

• The state of an object consists of a set of
data fields (also known as properties) with
their current values.

• The behavior of an object is defined by a set
of functions.

Outline
• Introduction
• Defining Classes for Objects
• Example: Defining Classes and Creating

Objects
• Constructors
• Constructing and Using Objects
• Separating Class Definition from

Implementation
• Data Field Encapsulation

4

Classes and Objects

5

A class defines the properties and
behaviors for objects..

Classes

6

• Classes are constructs that define
objects of the same type.

• A class uses variables to define data
fields and functions to define
behaviors.

• Additionally, a class provides a special
type of functions, known as
constructors, which are invoked to
construct objects from the class.

Example of the class for Circle objects

7

UML Class Diagram

8

class Replaces struct
• The C language has the struct type for

representing records.
• For example, you may define a struct type for

representing students as shown in (a).
• C++ class allows functions in addition to data

fields. class replaces struct, as in (b)

9

struct Student
{
 int id;
 char firstName[30];
 char mi;
 char lastName[30];
};

(a)

class Student
{
public:
 int id;
 char firstName[30];
 char mi;
 char lastName[30];
};

(b)

Outline
• Introduction
• Defining Classes for Objects
• Example: Defining Classes and Creating

Objects
• Constructors
• Constructing and Using Objects
• Separating Class Definition from

Implementation
• Data Field Encapsulation

10

A Simple Circle Class

• Objective: Demonstrate
creating objects, accessing
data, and using functions.

11

TestCircle Run

TestCircle.cpp 1/2
#include <iostream>
using namespace std;

class Circle
{
public:
 // The radius of this
circle
 double radius;

 // Construct a default
object
 Circle()
 {
 radius = 1;
 }

 // Construct a circle
object
 Circle(double newRadius)
 {
 radius = newRadius;
 }

 // Return the area of this circle
 double getArea()
 {
 return radius * radius *
3.14159;
 }

 // Return the perimeter of this
circle
 double getPermeter()
 {
 return 2 * radius * 3.14159;
 }

 // Set new radius for this circle
 void setRadius(double newRadius)
 {
 radius = newRadius;
 }
}; // Must place a semicolon here

12

TestCircle.cpp 2/2
int main()
{
 Circle circle1(1.0);
 Circle circle2(25);
 Circle circle3(125);

 cout << "The area of the circle of radius "
 << circle1.radius << " is " << circle1.getArea() << endl;
 cout << "The area of the circle of radius "
 << circle2.radius << " is " << circle2.getArea() << endl;
 cout << "The area of the circle of radius "
 << circle3.radius << " is " << circle3.getArea() << endl;

 // Modify circle radius
 circle2.radius = 100;
 cout << "The area of the circle of radius "
 << circle2.radius << " is " << circle2.getArea() << endl;

 return 0;
}

13

The area of the circle of radius 1 is 3.14159
The area of the circle of radius 25 is
1963.49
The area of the circle of radius 125 is
49087.3
The area of the circle of radius 100 is
31415.9

Example: The TV class
models TV sets

14

TV Run

TV.cpp 1/4
#include <iostream>
using namespace std;

class TV
{
public:
 int channel;
 int volumeLevel; // Default volume level is 1
 bool on; // By default TV is off

 TV()
 {
 channel = 1; // Default channel is 1
 volumeLevel = 1; // Default volume level is 1
 on = false; // By default TV is off
 }

 void turnOn()
 {
 on = true;
 } 15

TV.cpp 2/4
 void turnOff()
 {
 on = false;
 }

 void setChannel(int newChannel)
 {
 if (on && newChannel >= 1 && newChannel <= 120)
 channel = newChannel;
 }

 void setVolume(int newVolumeLevel)
 {
 if (on && newVolumeLevel >= 1 && newVolumeLevel <= 7)
 volumeLevel = newVolumeLevel;
 }

 void channelUp()
 {
 if (on && channel < 120)
 channel++;
 } 16

TV.cpp 3/4
 void channelDown()
 {
 if (on && channel > 1)
 channel--;
 }

 void volumeUp()
 {
 if (on && volumeLevel < 7)
 volumeLevel++;
 }

 void volumeDown()
 {
 if (on && volumeLevel > 1)
 volumeLevel--;
 }
};

17

TV.cpp 4/4
int main()
{
 TV tv1;
 tv1.turnOn();
 tv1.setChannel(30);
 tv1.setVolume(3);

 TV tv2;
 tv2.turnOn();
 tv2.channelUp();
 tv2.channelUp();
 tv2.volumeUp();

 cout << "tv1's channel is " << tv1.channel
 << " and volume level is " << tv1.volumeLevel << endl;
 cout << "tv2's channel is " << tv2.channel
 << " and volume level is " << tv2.volumeLevel << endl;

 return 0;
}

18

Outline
• Introduction
• Defining Classes for Objects
• Example: Defining Classes and Creating

Objects
• Constructors
• Constructing and Using Objects
• Separating Class Definition from

Implementation
• Data Field Encapsulation

19

Constructors

20

• The constructor has exactly the same name as
the defining class.

• Constructors can be overloaded (i.e., multiple
constructors with the same name but different
signatures).

• A class normally provides a constructor without
arguments (e.g., Circle()). Such constructor is
called a no-arg or no-argument constructor.

• A class may be declared without constructors. In
this case, a no-arg constructor with an empty
body is implicitly declared in the class. This
constructor is called a default constructor.

Constructors Features

21

• Constructors must have the same
name as the class itself.

• Constructors do not have a return
type—not even void.

• Constructors play the role of
initializing objects.

Initializer Lists

22

• Data fields may be initialized in the
constructor using an initializer list in the
following syntax:

• Example:

Outline
• Introduction
• Defining Classes for Objects
• Example: Defining Classes and Creating

Objects
• Constructors
• Constructing and Using Objects
• Separating Class Definition from

Implementation
• Data Field Encapsulation

23

Object Names
• You can assign a name when creating an object.
• A constructor is invoked when an object is created.
• The syntax to create an object using the no-arg

constructor is:
ClassName objectName;

• For example,
 Circle circle1;
• The size of and object depends on its data fields

only.
 cout << sizeof(circle1) << endl;;
 8

24

Constructing with Arguments

25

• The syntax to declare an object using a
constructor with arguments is:

ClassName objectName(arguments);

• For example, the following declaration
creates an object named circle2 by
invoking the Circle class’s constructor
with a specified radius 5.5.

Circle circle2(5.5);

Access Operator
• After an object is created, its data can

be accessed and its functions invoked
using the dot operator (.), also known
as the object member access operator:

• objectName.dataField references a
data field in the object.

• objectName.function(arguments)
invokes a function on the object.

26

Naming Objects and Classes

• When you declare a custom class,
capitalize the first letter of each word in
a class name; for example, the class
names Circle, Rectangle, and Desk.

• The class names in the C++ library are
named in lowercase.

• The objects are named like variables.

27

Class is a Type

• You can use primitive data types,
like int, to declare variables.

• You can also use class names to
declare object names.

• In this sense, a class is also a data
type.

28

Memberwise Copy
• You can also use the assignment operator = to

copy the contents from one object to the other.
• By default, each data field of one object is copied

to its counterpart in the other object. For
example,

circle2 = circle1;

• Copies the radius in circle1 to circle2.
• After the copy, circle1 and circle2 are still two

different objects, but with the same radius.
29

Constant Object Name

• Object names are like array names.
Once an object name is declared, it
represents an object.

• It cannot be reassigned to represent
another object.

• In this sense, an object name is a
constant, though the contents of the
object may change.

30

Anonymous Object
• Most of the time, you create a named object

and later access the members of the object
through its name.

• Occasionally, you may create an object and
use it only once. In this case, you don’t have
to name the object. Such objects are called
anonymous objects.

• The syntax to create an anonymous object is
ClassName() or ClassName(arguements)

• You can create an anonymous object just for
finding the area by:

 cout << "Area:" << Circle(5).getArea() <<
endl; 31

Outline
• Introduction
• Defining Classes for Objects
• Example: Defining Classes and Creating

Objects
• Constructors
• Constructing and Using Objects
• Separating Class Definition from

Implementation
• Data Field Encapsulation

32

Separating Definition from
Implementation

• C++ allows you to separate class definition from
implementation.

• The class definition describes the contract of the class
and the class implementation implements the contract.

• The class declaration simply lists all the data fields,
constructor prototypes, and the function prototypes.

• The class implementation implements the constructors
and functions.

• The class declaration and implementation are in two
separate files. Both files should have the same name,
but with different extension names. The class
declaration file has an extension name .h and the class
implementation file has an extension name .cpp.

33

Circle.h TestCircleWithHeader.cppCircle.cpp Run

Circle.h
#ifndef CIRCLE_H
#define CIRCLE_H
class Circle
{
public:
 // The radius of this circle
 double radius;

 // Construct a default circle object
 Circle();

 // Construct a circle object
 Circle(double);

 // Return the area of this circle
 double getArea();
};
#endif 34

Used to prevent a header file
from being included multiple
times.

Circle.cpp
#include "Circle.h"

// Construct a default circle object
Circle::Circle()
{
 radius = 1;
}

// Construct a circle object
Circle::Circle(double newRadius)
{
 radius = newRadius;
}

// Return the area of this circle
double Circle::getArea()
{
 return radius * radius * 3.14159;
} 35

The :: symbol is the binary
scope resolution operator

TestCircleWithHeader.cp
p#include <iostream>

#include "Circle.h"
using namespace std;

int main()
{
 Circle circle1;
 Circle circle2(5.0);

 cout << "The area of the circle of radius "
 << circle1.radius << " is " << circle1.getArea() <<
endl;
 cout << "The area of the circle of radius "
 << circle2.radius << " is " << circle2.getArea() <<
endl;

 // Modify circle radius
 circle2.radius = 100;
 cout << "The area of the circle of radius "
 << circle2.radius << " is " << circle2.getArea() <<
endl;

 return 0;
}

36

The area of the circle of radius 1 is 3.14159
The area of the circle of radius 5 is 78.5397
The area of the circle of radius 100 is
31415.9

Outline
• Introduction
• Defining Classes for Objects
• Example: Defining Classes and Creating

Objects
• Constructors
• Constructing and Using Objects
• Separating Class Definition from

Implementation
• Data Field Encapsulation

37

Data Field
Encapsulation

The data fields radius in the Circle
class can be modified directly (e.g.,
circle1.radius = 5). This is not a
good practice for two reasons:

38

1. Data may be tampered.
2. Second, it makes the class difficult to

maintain and vulnerable to bugs. Suppose
you want to modify the Circle class to
ensure that the radius is non-negative after
other programs have already used the
class. You have to change not only the
Circle class, but also the programs
(clients) that use the Circle class. This is
because the clients may have modified the
radius directly (e.g., myCircle.radius = -
5).

Accessor and Mutator
• A get function is referred to as a getter (or

accessor).
• A get function has the following signature:
returnType getPropertyName()

• If the returnType is bool, the get function should
be defined as follows by convention:
bool isPropertyName()

• A set function is referred to as a setter (or mutator).
• A set function has the following signature:

public void setPropertyName(dataType
propertyValue)

39

Example: The Circle
Class with

Encapsulation

40

CircleWithPrivateDataFields.h

Run

CircleWithPrivateDataFields.cpp

TestCircleWithPrivateDataFields

CircleWithPrivateDataFie
lds.h

#ifndef CIRCLE_H
#define CIRCLE_H

class Circle
{
public:
 Circle();
 Circle(double);
 double getArea();
 double getRadius();
 void setRadius(double);

private:
 double radius;
};

#endif
41

CircleWithPrivateDataFie
lds.cpp#include

"CircleWithPrivateDataFields.h"

// Construct a default circle object
Circle::Circle()
{
 radius = 1;
}

// Construct a circle object
Circle::Circle(double newRadius)
{
 radius = newRadius;
}

// Return the area of this circle
double Circle::getArea()
{
 return radius * radius * 3.14159;
}

// Return the radius of this
circle
double Circle::getRadius()
{
 return radius;
}

// Set a new radius
void
Circle::setRadius(double
newRadius)
{
 radius = (newRadius >=
0)
 ? newRadius :
0;
}

42

TestCircleWithPrivateDataFields
.cpp

#include <iostream>
#include "CircleWithPrivateDataFields.h"
using namespace std;

int main()
{
 Circle circle1;
 Circle circle2(5.0);

 cout << "The area of the circle of radius "
 << circle1.getRadius() << " is " << circle1.getArea() <<
endl;
 cout << "The area of the circle of radius "
 << circle2.getRadius() << " is " << circle2.getArea() <<
endl;

 // Modify circle radius
 circle2.setRadius(100);
 cout << "The area of the circle of radius "
 << circle2.getRadius() << " is " << circle2.getArea() <<
endl;

 return 0;
}

43

The area of the circle of radius 1 is 3.14159
The area of the circle of radius 5 is 78.5397
The area of the circle of radius 100 is
31415.9

Outline
• Introduction
• Defining Classes for Objects
• Example: Defining Classes and Creating

Objects
• Constructors
• Constructing and Using Objects
• Separating Class Definition from

Implementation
• Data Field Encapsulation

44

	Chapter 9: Objects and Classes Sections 9.19.6, 9.9
	Outline
	Introduction
	Outline (2)
	Classes and Objects
	Classes
	Example of the class for Circle objects
	UML Class Diagram
	class Replaces struct
	Outline (3)
	A Simple Circle Class
	TestCircle.cpp 1/2
	TestCircle.cpp 2/2
	Example: The TV class models TV sets
	TV.cpp 1/4
	TV.cpp 2/4
	TV.cpp 3/4
	TV.cpp 4/4
	Outline (4)
	Constructors
	Constructors Features
	Initializer Lists
	Outline (5)
	Object Names
	Constructing with Arguments
	Access Operator
	Naming Objects and Classes
	Class is a Type
	Memberwise Copy
	Constant Object Name
	Anonymous Object
	Outline (6)
	Separating Definition from Implementation
	Circle.h
	Circle.cpp
	TestCircleWithHeader.cpp
	Outline (7)
	Data Field Encapsulation
	Accessor and Mutator
	Example: The Circle Class with Encapsulation
	CircleWithPrivateDataFields.h
	CircleWithPrivateDataFields.cpp
	TestCircleWithPrivateDataFields.cpp
	Outline (8)

