
Chapter 2: Elementary
Programming

Sections 2.1−2.13, 2.15, 2.16

1

Textbooks: Y. Daniel Liang, Introduction to Programming with C++, 3rd Edition

© Copyright 2016 by Pearson Education, Inc. All Rights Reserved.

These slides were adapted by Prof. Gheith Abandah from the Computer Engineering Department of the University

of Jordan for the Course: Computer Skills for Engineers (0907101)

Updated by Dr. Ashraf Suyyagh (Spring 2021)

Outline

• Writing a Simple Program

• Reading Input from the
Keyboard

• Identifiers

• Variables

• Assignment Statements and
Assignment Expressions

• Named Constants

• Numeric Data Types and
Operations

• Evaluating Expressions and
Operator Precedence

• Case Study: Displaying the
Current Time

• Augmented Assignment
Operators

• Increment and Decrement
Operators

• Numeric Type Conversions

• Case Study: Counting
Monetary Units

• Common Errors

2

Writing a Simple Program

A program that computes the area of the circle.

3

Run

ComputeArea
Note: Clicking the blue button runs the code from

Windows. If you cannot run the buttons, see

IMPORTANT NOTE: If you cannot run the buttons, see
www.cs.armstrong.edu/liang/javaslidenote.doc.

Note: Clicking the green button displays the source code
with interactive animation. You can also run the code in
a browser. Internet connection is needed for this
button.

http://liveexample.pearsoncmg.com/liang/cpp3e/html/ComputeArea.html
http://www.cs.armstrong.edu/liang/javaslidenote.doc

Trace the Program Execution
#include <iostream>

using namespace std;

int main() {

double radius;

double area;

// Step 1: Read in radius

radius = 20;

// Step 2: Compute area

area = radius * radius * 3.14159;

// Step 3: Display the area

cout << "The area is ";

cout << area << endl;

}

4

no valueradius

allocate memory

for radius

animation

Trace the Program Execution

5

no valueradius

memory

animation

#include <iostream>

using namespace std;

int main() {

double radius;

double area;

// Step 1: Read in radius

radius = 20;

// Step 2: Compute area

area = radius * radius * 3.14159;

// Step 3: Display the area

cout << "The area is ";

cout << area << std::endl;

}

no valuearea

allocate memory

for area

Trace the Program Execution

6

20radius

no valuearea

assign 20 to radius

animation

#include <iostream>

using namespace std;

int main() {

double radius;

double area;

// Step 1: Read in radius

radius = 20;

// Step 2: Compute area

area = radius * radius * 3.14159;

// Step 3: Display the area

cout << "The area is ";

cout << area << std::endl;

}

Trace the Program Execution

7

20radius

memory

1256.636area

compute area and assign it

to variable area

animation

#include <iostream>

using namespace std;

int main() {

double radius;

double area;

// Step 1: Read in radius

radius = 20;

// Step 2: Compute area

area = radius * radius * 3.14159;

// Step 3: Display the area

cout << "The area is ";

cout << area << std::endl;

}

Trace the Program Execution

8

20radius

memory

1256.636area

print a message to the

console

animation

#include <iostream>

using namespace std;

int main() {

double radius;

double area;

// Step 1: Read in radius

radius = 20;

// Step 2: Compute area

area = radius * radius * 3.14159;

// Step 3: Display the area

cout << "The area is ";

cout << area << std::endl;

}

Outline

• Writing a Simple Program

• Reading Input from the
Keyboard

• Identifiers

• Variables

• Assignment Statements and
Assignment Expressions

• Named Constants

• Numeric Data Types and
Operations

• Evaluating Expressions and
Operator Precedence

• Case Study: Displaying the
Current Time

• Augmented Assignment
Operators

• Increment and Decrement
Operators

• Numeric Type Conversions

• Case Study: Counting
Monetary Units

• Common Errors

9

Reading Input from the Keyboard

You can use the cin object to read input from the
keyboard.

10

RunComputeAreaWithConsoleInput

http://liveexample.pearsoncmg.com/liang/cpp3e/html/ComputeAreaWithConsoleInput.html

#include <iostream>

using namespace std;

int main()

{

// Prompt the user to enter three numbers

double number1, number2, number3;

cout << "Enter three numbers: ";

cin >> number1 >> number2 >> number3;

// Compute average

double average = (number1 + number2 + number3) / 3;

// Display result

cout << "The average of " << number1 << " " << number2

<< " " << number3 << " is " << average << endl;

return 0;

}

Reading Multiple Input in One
Statement

11

RunComputeAverage

http://liveexample.pearsoncmg.com/liang/cpp3e/html/ComputeAverage.html

Outline

• Writing a Simple Program

• Reading Input from the
Keyboard

• Identifiers

• Variables

• Assignment Statements and
Assignment Expressions

• Named Constants

• Numeric Data Types and
Operations

• Evaluating Expressions and
Operator Precedence

• Case Study: Displaying the
Current Time

• Augmented Assignment
Operators

• Increment and Decrement
Operators

• Numeric Type Conversions

• Case Study: Counting
Monetary Units

• Common Errors

12

Identifiers
Identifiers are the names that identify elements such as

variables and functions in a program.
• An identifier is a sequence of characters that consists of

letters, digits, and underscores (_).
• An identifier must start with a letter or an underscore. It

cannot start with a digit.
• An identifier cannot be a reserved word. (See Appendix

A, “C++ Keywords,” for a list of reserved words.)
• An identifier can be of any length, but your C++

compiler may impose some restriction. Use identifiers of
31 characters or fewer to ensure portability.

13

Outline

• Writing a Simple Program

• Reading Input from the
Keyboard

• Identifiers

• Variables

• Assignment Statements and
Assignment Expressions

• Named Constants

• Numeric Data Types and
Operations

• Evaluating Expressions and
Operator Precedence

• Case Study: Displaying the
Current Time

• Augmented Assignment
Operators

• Increment and Decrement
Operators

• Numeric Type Conversions

• Case Study: Counting
Monetary Units

• Common Errors

14

Variables
Variables are used to represent values that may be

changed in the program.

// Compute the first area

radius = 1.0;

area = radius * radius * 3.14159;

cout << area;

// Compute the second area

radius = 2.0;

area = radius * radius * 3.14159;

cout << area;

15

Declaring Variables

datatype variable1, variable2,..., variablen;

int x; // Declare x to be an

// integer variable;

double radius; // Declare radius to

// be a double variable;

char a; // Declare a to be a

// character variable;

16

Declaring Variables

int i, j, k; // Declare three integers

int i = 10; // Declare and initialize

int i(1), j(2); // Is equivalent to

int i = 1, j = 2;

17

Outline

• Writing a Simple Program

• Reading Input from the
Keyboard

• Identifiers

• Variables

• Assignment Statements and
Assignment Expressions

• Named Constants

• Numeric Data Types and
Operations

• Evaluating Expressions and
Operator Precedence

• Case Study: Displaying the
Current Time

• Augmented Assignment
Operators

• Increment and Decrement
Operators

• Numeric Type Conversions

• Case Study: Counting
Monetary Units

• Common Errors

18

Assignment Statements

An assignment statement designates a value for a variable. An
assignment statement can be used as an expression in C++.

x = 1; // Assign 1 to x;

y = x + 1; // Assign 2 to y;

radius = 1.0; // Assign 1.0 to radius;

a = 'A'; // Assign 'A' to a;

19

Assignment Statements

An assignment statement designates a value for a variable.

i = j = k = 1; // Assigns 1 to the three

// variables

cout << x = 1; // Assigns 1 to x and

// outputs 1

20

Outline

• Writing a Simple Program

• Reading Input from the
Keyboard

• Identifiers

• Variables

• Assignment Statements and
Assignment Expressions

• Named Constants

• Numeric Data Types and
Operations

• Evaluating Expressions and
Operator Precedence

• Case Study: Displaying the
Current Time

• Augmented Assignment
Operators

• Increment and Decrement
Operators

• Numeric Type Conversions

• Case Study: Counting
Monetary Units

• Common Errors

21

Named Constants

A named constant is an identifier that represents a
permanent value.

const datatype CONSTANTNAME = VALUE;

const double PI = 3.14159;

22

RunComputeAreaConstant

http://liveexample.pearsoncmg.com/liang/cpp3e/html/ComputeAreaWithConstant.html

Outline

• Writing a Simple Program

• Reading Input from the
Keyboard

• Identifiers

• Variables

• Assignment Statements and
Assignment Expressions

• Named Constants

• Numeric Data Types and
Operations

• Evaluating Expressions and
Operator Precedence

• Case Study: Displaying the
Current Time

• Augmented Assignment
Operators

• Increment and Decrement
Operators

• Numeric Type Conversions

• Case Study: Counting
Monetary Units

• Common Errors

23

Numerical Data Types

• Signed integers

– 16 bits: short -3

– 32 bits: int 100000

– 64 bits: long long -2147483648

• Unsigned integers

– 16 bits: unsigned short 4

– 32 bits: unsigned

– 64 bits: unsigned long long

24

Synonymous Types

short int is synonymous to short. For example,

short int i = 2;

is same as

short i = 2;

unsigned short int ≡ unsigned short

unsigned int ≡ unsigned

long int ≡ long

unsigned long int ≡ unsigned long

25

Numerical Data Types

• Floating-point numbers
– 32 bits: float 1.5

– 64 bits: double -1.23456E+2

– 80 bits: long double 9.1e-1000

• When a number such as 50.534 is converted into
scientific notation such as 5.0534e+1, its decimal
point is moved (i.e., floated) to a new position.

26

double vs. float

The double type values are more accurate than the float
type values. For example,

27

cout << "1.0 / 3.0 is " << 1.0 / 3.0 << endl;

 1.0 / 3.0 is 0.33333333333333331

16 digits

cout << "1.0F / 3.0F is " << 1.0F / 3.0F << endl;

 1.0F / 3.0F is 0.3333333432674408

7 digits

Numerical Data Types

28

Name Synonymy Range Storage Size

short short int –2

15
 to 2

15
–1 (-32,768 to 32,767) 16-bit signed

unsigned short unsigned short int 0 to 2

16
–1 (65535) 16-bit unsigned

int signed –2

31
 to 2

31
–1 (-2147483648 to 2147483647) 32-bit

unsigned unsigned int 0 to 2

32
–1 (4294967295) 32-bit unsigned

signed

long long –2
63
 (-9223372036854775808) to

 263–1 (9223372036854775807) 64-bit signed

unsigned long unsigned long int 0 to 2
32
–1 (4294967295) 32-bit unsigned

float Negative range: 32-bit IEEE 754

 -3.4028235E+38 to -1.4E-45

 Positive range:

 1.4E-45 to 3.4028235E+38

 double Negative range: 64-bit IEEE 754

 -1.7976931348623157E+308 to -4.9E-324

 Positive range:

 4.9E-324 to 1.7976931348623157E+308

 long double Negative range: 80-bit

 -1.18E+4932 to -3.37E-4932

 Positive range:

 3.37E-4932 to 1.18E+4932

 Significant decimal digits: 19

long long int –2
31
 (-2147483648) to 2

31
–1 (2147483647) 32-bit signed

sizeof Function
You can use the sizeof function to find the size of a type.
For example, the following statement displays the size of
int, long, and double on your machine.

cout << sizeof(int) << " " <<

sizeof(long) << " " << sizeof(double);

4 4 8

double area = 5.4;

cout << "Size of area: " << sizeof(area)

<< " bytes" << endl;

Size of area: 8 bytes
29

Numeric Literals

A literal is a constant value that appears directly in a
program. For example, 34, 1000000, and 5.0 are literals in
the following statements:

int i = 34;

long k = 1000000;

double d = 5.0;

30

octal and hex literals

• By default, an integer literal is a decimal number.
• To denote a binary integer literal, use a leading
0b or 0B (zero b).

• To denote an octal integer literal, use a leading 0
(zero)

• To denote a hexadecimal integer literal, use a
leading 0x or 0X (zero x).

cout << 10 << " " << 0b10 << " " << 010
<< " " << 0x10;

10 2 8 16

31

Outline

• Writing a Simple Program

• Reading Input from the
Keyboard

• Identifiers

• Variables

• Assignment Statements and
Assignment Expressions

• Named Constants

• Numeric Data Types and
Operations

• Evaluating Expressions and
Operator Precedence

• Case Study: Displaying the
Current Time

• Augmented Assignment
Operators

• Increment and Decrement
Operators

• Numeric Type Conversions

• Case Study: Counting
Monetary Units

• Common Errors

32

Numeric Operators

33

Integer Division

5 / 3 yields an integer 1.

5.0 / 2 yields a double value 2.5

5 % 2 yields 1 (the remainder of the division)

34

Remainder Operator

Remainder is very useful in programming. For example, an
even number % 2 is always 0 and an odd number % 2 is
always 1. So you can use this property to determine
whether a number is even or odd.
Suppose today is Saturday and you and your friends are
going to meet in 10 days. What day is in 10 days? You can
find that day is Tuesday using the following expression:

35

S M T W T F S
0 1 2 3 4 5 6

Example: Displaying Time

A program that obtains minutes from seconds.

36

RunDisplayTime

http://liveexample.pearsoncmg.com/liang/cpp3e/html/DisplayTime.html

Exponent Operations

pow(a, b) = ab

cout << pow(2.0, 3) << endl;

8

cout << pow(4.0, 0.5) << endl;

2

cout << pow(2.5, 2) << endl;

6.25

cout << pow(2.5, -2) << endl;

0.16
37

Overflow

When a variable is assigned a value that is
too large to be stored, it causes overflow.

For example, executing the following
statement causes overflow, because the
largest value that can be stored in a variable
of the short type is 32767. 32768 is too
large.

short value = 32767 + 1;

38

Outline

• Writing a Simple Program

• Reading Input from the
Keyboard

• Identifiers

• Variables

• Assignment Statements and
Assignment Expressions

• Named Constants

• Numeric Data Types and
Operations

• Evaluating Expressions and
Operator Precedence

• Case Study: Displaying the
Current Time

• Augmented Assignment
Operators

• Increment and Decrement
Operators

• Numeric Type Conversions

• Case Study: Counting
Monetary Units

• Common Errors

39

Arithmetic Expressions

40

is translated to

(3+4*x)/5 – 10*(y-5)*(a+b+c)/x + 9*(4/x +

(9+x)/y)

Precedence

() Operators contained within pairs of
parentheses are evaluated first.

* / % Multiplication, division, and remainder
operators are applied next.

+ - Addition and subtraction operators are
applied last.

→ If an expression contains several similar
operators, they are applied from left to right.

41

Precedence Example

42

Example: Converting
Temperatures

Write a program that converts a Fahrenheit degree
to Celsius using the formula:

43

)32)((
9
5 −= fahrenheitcelsius

RunFahrenheitToCelsius

http://liveexample.pearsoncmg.com/liang/cpp3e/html/FahrenheitToCelsius.html

Outline

• Writing a Simple Program

• Reading Input from the
Keyboard

• Identifiers

• Variables

• Assignment Statements and
Assignment Expressions

• Named Constants

• Numeric Data Types and
Operations

• Evaluating Expressions and
Operator Precedence

• Case Study: Displaying the
Current Time

• Augmented Assignment
Operators

• Increment and Decrement
Operators

• Numeric Type Conversions

• Case Study: Counting
Monetary Units

• Common Errors

44

Displaying the Current Time

45

Write a program that displays current time in GMT in the
format hour:minute:second such as 1:45:19.

The time(0) function in the ctime header file returns
the current time in seconds elapsed since the time
00:00:00 on January 1, 1970 GMT, as shown in Figure 2.1.
This time is known as the Unix epoch because 1970 was
the year when the Unix operating system was formally
introduced.

Elapsed

time

Unix Epoch

01-01-1970

00:00:00 GMT

Current Time

Time

time(0)
RunShowCurrentTime

http://liveexample.pearsoncmg.com/liang/cpp3e/html/ShowCurrentTime.html

ShowCurrentTime.cpp
#include <iostream>
#include <ctime>
using namespace std;
int main() {
// Obtain the total seconds since the midnight, Jan 1, 1970
int totalSeconds = time(0);
// Compute the current second in the minute in the hour
int currentSecond = totalSeconds % 60;
// Obtain the total minutes
int totalMinutes = totalSeconds / 60;
// Compute the current minute in the hour
int currentMinute = totalMinutes % 60;
// Obtain the total hours
long totalHours = totalMinutes / 60;
// Compute the current hour
int currentHour = (int)(totalHours % 24);
// Display results
cout << "Current time is " << currentHour << ":"
<< currentMinute << ":" << currentSecond << " GMT" << endl;

return 0;
}

46

Outline

• Writing a Simple Program

• Reading Input from the
Keyboard

• Identifiers

• Variables

• Assignment Statements and
Assignment Expressions

• Named Constants

• Numeric Data Types and
Operations

• Evaluating Expressions and
Operator Precedence

• Case Study: Displaying the
Current Time

• Augmented Assignment
Operators

• Increment and Decrement
Operators

• Numeric Type Conversions

• Case Study: Counting
Monetary Units

• Common Errors

47

Augmented Assignment Operators

48

Outline

• Writing a Simple Program

• Reading Input from the
Keyboard

• Identifiers

• Variables

• Assignment Statements and
Assignment Expressions

• Named Constants

• Numeric Data Types and
Operations

• Evaluating Expressions and
Operator Precedence

• Case Study: Displaying the
Current Time

• Augmented Assignment
Operators

• Increment and Decrement
Operators

• Numeric Type Conversions

• Case Study: Counting
Monetary Units

• Common Errors

49

Increment and Decrement Operators

50

Operator Name Description

++var pre-
increment

Increments var by 1 and evaluates to the new
value in var after the increment.

var++ post-
increment

Evaluates to the original value in var and
increments var by 1.

--var pre-
decrement

Decrements var by 1 and evaluates to the new
value in var after the decrement.

var-- post-
decrement

Evaluates to the original value in var and
decrements var by 1.

Increment and
Decrement Operators, cont.

51

What is the output of the following two sequences?

Increment and
Decrement Operators, cont.

52

Using increment and decrement operators makes
expressions short, but it also makes them complex
and difficult to read. Avoid using these operators in
expressions that modify multiple variables, or the
same variable for multiple times such as this:

int k = ++i + i; // Avoid!

Outline

• Writing a Simple Program

• Reading Input from the
Keyboard

• Identifiers

• Variables

• Assignment Statements and
Assignment Expressions

• Named Constants

• Numeric Data Types and
Operations

• Evaluating Expressions and
Operator Precedence

• Case Study: Displaying the
Current Time

• Augmented Assignment
Operators

• Increment and Decrement
Operators

• Numeric Type Conversions

• Case Study: Counting
Monetary Units

• Common Errors

53

Numeric Type Conversion

Consider the following statements:

short i = 100;

long k = i * 3 + 4;

double d = i * 3.1 + k / 2;

54

Type Casting

Implicit casting
double d = 3; // type widening

Explicit casting
int i = static_cast<int>(3.0);

// type narrowing

int i = (int)3.9; // C-style casting

// Fraction part is truncated

55

NOTE

Casting does not change the variable being cast.
For example, d is not changed after casting in
the following code:

double d = 4.5;

int i = static_cast<int>(d);

// d is not changed

56

NOTE

The GNU and Visual C++ compilers will give a
warning when you narrow a type unless you use
static_cast to make the conversion explicit.

57

Example: Keeping Two Digits
after Decimal Points

Write a program that displays the 6%-sales tax with
two digits after the decimal point.

cout << "Sales tax is " <<

static_cast<int>(tax * 100) / 100.0;

58

RunSalesTax

http://liveexample.pearsoncmg.com/liang/cpp3e/html/SalesTax.html

Outline

• Writing a Simple Program

• Reading Input from the
Keyboard

• Identifiers

• Variables

• Assignment Statements and
Assignment Expressions

• Named Constants

• Numeric Data Types and
Operations

• Evaluating Expressions and
Operator Precedence

• Case Study: Displaying the
Current Time

• Augmented Assignment
Operators

• Increment and Decrement
Operators

• Numeric Type Conversions

• Case Study: Counting
Monetary Units

• Common Errors

59

Case Study: Counting Monetary Units

60

This program lets the user enter the amount in decimal
representing dollars and cents and output a report
listing the monetary equivalent in single dollars,
quarters, dimes, nickels, and pennies.

Dollar = 100 cents

Quarters = 25 cents

Dime = 10 cents

Nickel = 5 cents RunComputeChange

http://liveexample.pearsoncmg.com/liang/cpp3e/html/ComputeChange.html

Trace ComputeChange

int remainingAmount = (int)(amount * 100);

// Find the number of one dollars

int numberOfOneDollars = remainingAmount / 100;

remainingAmount = remainingAmount % 100;

// Find the number of quarters in the remaining
amount

int numberOfQuarters = remainingAmount / 25;

remainingAmount = remainingAmount % 25;

// Find the number of dimes in the remaining amount

int numberOfDimes = remainingAmount / 10;

remainingAmount = remainingAmount % 10;

// Find the number of nickels in the remaining
amount

int numberOfNickels = remainingAmount / 5;

remainingAmount = remainingAmount % 5;

// Find the number of pennies in the remaining
amount

int numberOfPennies = remainingAmount;

61

1156remainingAmount

remainingAmount

initialized

Suppose amount is 11.56

Trace ComputeChange

int remainingAmount = (int)(amount * 100);

// Find the number of one dollars

int numberOfOneDollars = remainingAmount / 100;

remainingAmount = remainingAmount % 100;

// Find the number of quarters in the remaining
amount

int numberOfQuarters = remainingAmount / 25;

remainingAmount = remainingAmount % 25;

// Find the number of dimes in the remaining amount

int numberOfDimes = remainingAmount / 10;

remainingAmount = remainingAmount % 10;

// Find the number of nickels in the remaining
amount

int numberOfNickels = remainingAmount / 5;

remainingAmount = remainingAmount % 5;

// Find the number of pennies in the remaining
amount

int numberOfPennies = remainingAmount;

62

1156remainingAmount

Suppose amount is 11.56

11numberOfOneDollars

numberOfOneDollars

assigned

animation

Trace ComputeChange

int remainingAmount = (int)(amount * 100);

// Find the number of one dollars

int numberOfOneDollars = remainingAmount / 100;

remainingAmount = remainingAmount % 100;

// Find the number of quarters in the remaining
amount

int numberOfQuarters = remainingAmount / 25;

remainingAmount = remainingAmount % 25;

// Find the number of dimes in the remaining amount

int numberOfDimes = remainingAmount / 10;

remainingAmount = remainingAmount % 10;

// Find the number of nickels in the remaining
amount

int numberOfNickels = remainingAmount / 5;

remainingAmount = remainingAmount % 5;

// Find the number of pennies in the remaining
amount

int numberOfPennies = remainingAmount;

63

56remainingAmount

Suppose amount is 11.56

11numberOfOneDollars

remainingAmount

updated

animation

Trace ComputeChange

int remainingAmount = (int)(amount * 100);

// Find the number of one dollars

int numberOfOneDollars = remainingAmount / 100;

remainingAmount = remainingAmount % 100;

// Find the number of quarters in the remaining
amount

int numberOfQuarters = remainingAmount / 25;

remainingAmount = remainingAmount % 25;

// Find the number of dimes in the remaining amount

int numberOfDimes = remainingAmount / 10;

remainingAmount = remainingAmount % 10;

// Find the number of nickels in the remaining
amount

int numberOfNickels = remainingAmount / 5;

remainingAmount = remainingAmount % 5;

// Find the number of pennies in the remaining
amount

int numberOfPennies = remainingAmount;

64

56remainingAmount

Suppose amount is 11.56

11numberOfOneDollars

2numberOfOneQuarters

numberOfOneQuarters

assigned

animation

Trace ComputeChange

int remainingAmount = (int)(amount * 100);

// Find the number of one dollars

int numberOfOneDollars = remainingAmount / 100;

remainingAmount = remainingAmount % 100;

// Find the number of quarters in the remaining
amount

int numberOfQuarters = remainingAmount / 25;

remainingAmount = remainingAmount % 25;

// Find the number of dimes in the remaining amount

int numberOfDimes = remainingAmount / 10;

remainingAmount = remainingAmount % 10;

// Find the number of nickels in the remaining
amount

int numberOfNickels = remainingAmount / 5;

remainingAmount = remainingAmount % 5;

// Find the number of pennies in the remaining
amount

int numberOfPennies = remainingAmount;

65

6remainingAmount

Suppose amount is 11.56

11numberOfOneDollars

2numberOfQuarters

remainingAmount

updated

animation

Outline

• Writing a Simple Program

• Reading Input from the
Keyboard

• Identifiers

• Variables

• Assignment Statements and
Assignment Expressions

• Named Constants

• Numeric Data Types and
Operations

• Evaluating Expressions and
Operator Precedence

• Case Study: Displaying the
Current Time

• Augmented Assignment
Operators

• Increment and Decrement
Operators

• Numeric Type Conversions

• Case Study: Counting
Monetary Units

• Common Errors

66

Common Errors

1. Undeclared or Uninitialized Variables
double interestRate = 0.05;

double interest = interestrate * 45;

2. Integer Overflow
short value = 32767 + 1; // is -32768

3. Round-off Errors
float a = 1000.43;

float b = 1000.0;

cout << a - b << endl;

displays 0.429993, not 0.43

67

Common Errors

4. Unintended Integer Division

(a) displays 1, (b) displays 1.5

5. Forgetting Header Files
#include <cmath> // needed for pow()

#include <ctime> // needed for time()

68

Outline

• Writing a Simple Program

• Reading Input from the
Keyboard

• Identifiers

• Variables

• Assignment Statements and
Assignment Expressions

• Named Constants

• Numeric Data Types and
Operations

• Evaluating Expressions and
Operator Precedence

• Case Study: Displaying the
Current Time

• Augmented Assignment
Operators

• Increment and Decrement
Operators

• Numeric Type Conversions

• Case Study: Counting
Monetary Units

• Common Errors

69

	02_Elementary_Programming
	Chapter 2: Elementary Programming��Sections 2.12.13, 2.15, 2.16
	Outline
	Writing a Simple Program
	Trace the Program Execution
	Trace the Program Execution
	Trace the Program Execution
	Trace the Program Execution
	Trace the Program Execution
	Outline
	Reading Input from the Keyboard
	Reading Multiple Input in One Statement
	Outline
	Identifiers
	Outline
	Variables
	Declaring Variables
	Declaring Variables
	Outline
	Assignment Statements
	Assignment Statements
	Outline
	Named Constants
	Outline
	Numerical Data Types
	Synonymous Types
	Numerical Data Types
	double vs. float
	Numerical Data Types
	sizeof Function
	Numeric Literals
	octal and hex literals
	Outline
	Numeric Operators
	Integer Division
	Remainder Operator
	Example: Displaying Time
	Exponent Operations
	Overflow
	Outline
	Arithmetic Expressions
	Precedence
	Precedence Example
	Example: Converting Temperatures
	Outline
	Displaying the Current Time
	ShowCurrentTime.cpp
	Outline
	Augmented Assignment Operators
	Outline
	Increment and Decrement Operators
	Increment and�Decrement Operators, cont.
	Increment and�Decrement Operators, cont.
	Outline
	Numeric Type Conversion
	Type Casting
	NOTE
	NOTE
	Example: Keeping Two Digits after Decimal Points
	Outline
	Case Study: Counting Monetary Units
	Trace ComputeChange
	Trace ComputeChange
	Trace ComputeChange
	Trace ComputeChange
	Trace ComputeChange
	Outline
	Common Errors
	Common Errors
	Outline

